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A frame allows every element in a Hilbert space H to be written as a linear
combination of the frame elements, with coefficients called frame coefficients.
Calculation of the frame coefficients requires inversion of an operator S on H. We
show how the inverse of S can be approximated as close as we like using finite-
dimensional linear algebra. In contrast with previous methods, our approximation
can be used for any frame. Various consequences for approximation of the frame
coefficients or approximation of the solution to a moment problem are discussed.
We also apply the results to Gabor frames and frames consisting of translates of a
single function. � 2000 Academic Press

1. INTRODUCTION

A frame [ f i]�
i=1 in a Hilbert space H has the property that every

element f # H has a representation as f =��
i=1 a i f i for a set of square-

summable coefficients [ai]�
i=1 . Frame theory gives a canonical choice for

[ai]�
i=1 , the so-called frame coefficients. From the mathematical point of

view this is gratifying, but for applications it is a problem that calculation
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of the frame coefficients require inversion of an operator S on H, which is
usually infinite-dimensional.

In the present paper we introduce a new method to approximate the
inverse of S using finite subsets of the frame. We show that S&1 can be
approximated using finite-dimensional methods for any frame [ fi]�

i=1 .
This is theoretically interesting, and it also has the potential of being useful
in applications. However, the transaction from theory to practice is far
from trivial. Comment further on this issue in Section 3.

The present work is strongly motivated by the fact that the projection
method discussed in [4] does not allow one to approximate the inverse
frame operator corresponding to a Gabor frame. We discuss this important
observation in Section 2, along with discussing basic properties of frames.

The new method is presented in Section 3. We show how the inverse
frame operator corresponding to any frame can be approximated as close
as we want in the strong operator topology, by operators that can be found
using only finite-dimensional linear algebra. The speed of convergence is
estimated, and some consequences for approximation of the frame coef-
ficients are discussed.

In Section 4 we apply the results to a moment problem. Section 5 is
devoted to applications to Gabor frames and frames consisting of translates
of a single function.

2. PRELIMINARIES

In all that follows, H denotes a separable Hilbert space with the inner
product ( } , } ) linear in the first entry; I denotes a countable index set.

A family of elements [ fi] i # I �H is a frame if

_A, B>0: A & f &2� :
i # I

|( f, fi) |2�B & f &2, \f # H.

The numbers A, B are called frame bounds.
We say that [ fi] i # I is a Riesz frame if every subfamily of [ f i] i # I is a

frame for its closed linear span, with the same frame bounds A, B for each
subfamily. Observe, that if [ fi] i # I is known to be a frame, we only need
to check the existence of a common lower bound (which is, however,
usually the more difficult part).

If [ f i] i # I is a frame, the frame operator is defined by

S : H � H Sf = :
i # I

( f, f i) f i .
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The series defining Sf converges unconditionally for all f # H, and S is a
bounded, invertible, and self-adjoint operator. This leads to the frame
decomposition:

f =SS&1f = :
i # I

( f, S &1fi) fi , \f # H.

The possibility of representing every f # H in this way is the main feature
of a frame. The coefficients [( f, S&1fi)] i # I are called frame coefficients.
For more general information about frames we refer to [9, 12].

Frames can equally well be considered in finite-dimensional spaces. It is
easy to see that every finite collection of elements in H is a frame for its
span. For convenience we index our frames by the natural numbers in the
rest of the section. Given a frame [ fi]�

i=1 , we let n # N and consider the
family [ fi]n

i=1 , which is a frame for Hn=span[ fi]n
i=1 with frame operator

Sn : Hn � Hn , Sn f = :
n

i=1

( f, fi) fi

and frame decomposition f =�n
i=1 ( f, S &1

n fi) f i , f # Hn . It can be shown
that the orthogonal projection Pn of H onto Hn is given by

Pn f = :
n

i=1

( f, S &1
n fi) f i , f # H.

It is very natural to ask whether

( f, S &1
n f i) � ( f, S &1fi) as n � �, \f # H, \i # N. (1)

Since (1) concerns the limit as n � �, the question makes sense even
though ( f, S &1

n f i) is only defined for n�i.
An affirmative answer to this question may be useful in practical

implementations of frames: whereas calculation of ( f, S &1fi) requires
inversion of S (which can be difficult when H is infinite-dimensional),
calculation of ( f, S &1

n f i) can be done using finite-dimensional linear
algebra.

The question above is studied in [1, 2, 4, 6]. In particular it is shown
in [6] that the answer is yes if [ fi]�

i=1 is a Riesz frame. Unfortunately, the
answer is usually no for a Gabor frame, as we show now. We want to
discuss this in some detail. The reader who is mainly interested in a method
that works for any frame can skip the rest of the introduction and continue
with the next section.

Remember that a Gabor frame for L2(R) has the form

[ fk, l (x)]k, l # Z=[eikbxf (x&la)]k, l # Z ,
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where a, b>0 and f # L2(R) are fixed. Note that i denotes the complex unit
number here!

Gabor frames where the function f has compact support play a special
role. It is well known, cf. [10], that [ fk, l (x)]k, l # Z is a frame for L2(R) if
f has support in an interval of length 2?�b and there exist constants
A, B>0 such that A��l # Z | f (x&la)|2�B, a.e. For a frame [ fk, l (x)]k, l # Z

of this type we will now give a quick argument showing that (1) is not satisfied
unless [ fk, l (x)]k, l # Z is a Riesz basis.

Proposition 2.1. Suppose that f # L2(R) has compact support and that
[ fk, l (x)]k, l # Z is a frame for L2(R). If (1) is satisfied for an indexing
[ fi]�

i=1 of the frame elements, then [ fk, l(x)]k, l # Z is a Riesz basis.

Recently, Heil et al. [11] showed that the functions [ fk, l (x)]k, l # Z are
linearly independent (meaning that every finite collection of the elements
[ fk, l (x)]k, l # Z is linearly independent) if f{0 has compact support.
Proposition 2.1 now follows from Lemma 2.2 below, which is due to Kim
and Lim [13]. For the reader's convenience we include a short new proof:

Lemma 2.2. Let [ fi]�
i=1 be a frame and suppose that [ f i]�

i=1 is linearly
independent. If (1) is satisfied, then [ fi]�

i=1 is a Riesz basis.

Proof. Let n # N. The linear independence of [ fi]�
i=1 implies that

[ fi]n
i=1 is a Riesz basis for Hn . The dual basis is [S &1

n f i]n
i=1 , so

( fi , S &1
n f j)=$i, j , i, j=1, 2, ..., n,

where $i, j=1 whenever i= j, and $i, j=0 otherwise. By letting n � � and
using (1), we obtain that

( fi , S&1fj) =$i, j , \i, j # N,

which means that [ fi]�
i=1 is a Riesz basis. Q.E.D

Remark. In [11], the authors actually conjecture that [ fk, l (x)]k, l # Z is
linearly independent whether or not f has compact support. If the conjec-
ture holds, we can remove the assumption about f having compact support
from Proposition 2.1.2

For a Riesz basis [ fi]�
i=1 , there exist easier ways to calculate ( f, S&1f i)

than to use (1), so Proposition 2.1 is a serious shortcoming for Gabor
frames. Furthermore, a frame of translates is automatically linearly inde-
pendent, so the same trouble appears. For wavelets the question is still
open.

2 Note added in proof. Shortly before this paper was printed, the authors learned that the
conjecture has been proved by P. Linnell. We refer to his paper Von Neumann algebras and
linear independence of translates, Proc. Amer. Math. Soc. 127, No. 11 (1999), 3269�3277.
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In the next section, we introduce a new method for approximation of the
inverse frame operator using finite subsets of the frame. In particular we
obtain a way of approximation of the frame coefficients which is similar to
(1), but which can be used for any frame. We are convinced that the new
method will be very useful in many applications where frames appear.

3. APPROXIMATION OF S&1

In this section we let [ fi]�
i=1 be a frame with bounds A, B.

Lemma 3.1. Given n # N, there exists a number m(n) such that

A
2

& f &2� :
n+m(n)

i=1

|( f, f i) | 2, \f # Hn .

Proof. Let n # N. Given =>0, choose a finite set of elements gk # Hn

such that &gk&=1, \k, and such that the balls

B(gk , =) :=[ f # Hn | & f& gk&�=]

cover the compact set [ f # Hn | & f &=1]. Since A���
i=1 |(gk , f i) |2 for

all k, we can choose m(n) such that

A 2
3� :

n+m(n)

i=1

|(gk , fi) |2, \k.

Now let f # Hn , & f &=1. Choose k such that f # B(gk , =). By the opposite
triangle inequality applied to

[( f, fi)]n+m(n)
i=1 =[(gk , f i) &(gk& f, fi)]n+m(n)

i=1 ,

we have

_ :
n+m(n)

i=1

|( f, f i) |2&
1�2

�_ :
n+m(n)

i=1

|(gk , f i) |2&
1�2

&_ :
n+m(n)

i=1

|(gk& f, f i) | 2&
1�2

�- A(2�3)&- B &gk& f &�- A(2�3)&- B =.

By choosing = small enough - A(2�3)&- B =�- A�2, from which the
result follows. Q.E.D
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The next lemma show that for every frame [ fi]�
i=1 we can construct

a family of frames ``approaching [ fi]�
i=1 ,'' which have common frame

bounds. Remember that the approximation (1) works for every Riesz
frame; the lemma below turns out to be the key to an improved method
that works for every frame.

Lemma 3.2. For any n # N, choose m(n) as in Lemma 3.1. [Pn f i]n+m(n)
i=1

is a frame for Hn with bounds A�2, B. The frame operator is Pn Sn+m(n) :
Hn � Hn , and

&PnSn+m(n)&�B, &(Pn Sn+m(n))
&1&�

2
A

.

Proof. Let f # Hn . Then

:
n+m(n)

i=1

|( f, Pn fi) | 2= :
n+m(n)

i=1

|( f, f i) |2�
A
2

& f &2.

Also,

:
n+m(n)

i=1

|( f, Pn fi) |2= :
n+m(n)

i=1

|( f, f i) |2� :
�

i=1

|( f, f i) |2�B & f &2.

So [Pn f i]n+m(n)
i=1 is a frame for Hn with the claimed bounds. The frame

operator is given by

f [ :
n+m(n)

i=1

( f, Pn fi) Pn fi=PnSn+m(n) f, f # Hn .

The norm estimates now follow from Proposition 3.4. in [3], where it is
proved that the norm of a frame operator is at most equal to the upper
frame bound, and that the norm of the inverse frame operator is at most
equal to the reciprocal of the lower frame bound. Q.E.D

We are now ready to prove that S&1 can be approximated arbitrarily
closely in the strong operator topology using the operators (PnSn+m(n))

&1 Pn :
Hn � Hn , n # N. Observe that (PnSn+m(n))

&1 Pn can be found using finite-
dimensional methods!

Theorem 3.3 Let [ fi]�
i=1 be a frame with bounds A, B. For n # N,

choose m(n) as in Lemma 3.1. Then

(PnSn+m(n))
&1 Pn f � S &1f for n � �, \f # H.
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Proof. Let f # H and define

,n :=S&1f &(PnSn+m(n))
&1 Pn f

=PnS &1f &(PnSn+m(n))
&1 Pn f +(I&Pn) S &1f.

Since (I&Pn) S &1f � 0 as n � �, it is enough to show that

�n :=PnS &1f &(PnSn+m(n))
&1 Pn f � 0.

Since �n # Hn we can apply the operator PnSn+m(n) to get

�n=(Pn Sn+m(n))
&1 (Pn Sn+m(n) Pn S&1f &Pn f ).

Consequently,

&�n &�&(PnSn+m(n))
&1& }&PnSn+m(n)PnS&1f &Pn f &

�
2
A

&Sn+m(n) PnS &1f &f & � 0 for n � �.

Q.E.D

The proof of Theorem 3.3 gives an estimate for how fast
(PnSn+m(n))

&1 Pn f converges to S&1f:

&S &1f &(Pn Sn+m(n))
&1 Pn f &

=&,n&�&�n &+&(I&Pn) S&1f &

�
2
A

(& f&Sn+m(n) S &1f &+&Sn+m(n)(I&Pn) S&1f &)

+&(I&Pn) S &1f &

�
2
A " :

�

i=n+m(n)+1

(S &1f, f i) f i"+\2B
A

+1+ &(I&Pn) S &1f &

�
2 - B

A _ :
�

i=n+m(n)+1

|(S&1f, f i) |2&
1�2

+\2B
A

+1+ &(I&Pn) S&1f &.

This is, however, not good for applications since the estimate involves S&1.
The next theorem shows that we can obtain more useful estimates for the
speed of convergence by replacing the condition on m(n) by a stronger one.
First, we need a lemma. The proof is very similar to the proof of
Lemma 3.1, so we omit it.

344 CASAZZA AND CHRISTENSEN



Lemma 3.4. Let H, L be Hilbert spaces and let Tk : H � L, k # N, be
a sequence of bounded operators such that Tk f � 0 for k � �, \f # H. Given
=>0 and a finite dimensional subspace K of H, there exists a number k0

such that for k�k0 ,

&Tk f &�= & f &, \f # K.

Lemma 3.4 is needed in order to ensure that the hypothesis of the
theorem below can be satisfied. Consider a fixed n # N and let K :=Hn .
The family of operators

Tk : H � l2, Tk f =[( f, f i)]�
i=k

satisfies the condition in Lemma 3.4. Thus, given =>0, there exists k0 # N
such that

&Tk0
f &2� :

�

i=k0

|( f, fi) | 2�= & f &2, \f # Hn .

Denote the restriction of an operator T to a subspace K by T |K .

Theorem 3.5. Let [ f i]�
i=1 be a frame with bounds A, B and let [=n]�

n=1

�]0, A[ be a decreasing sequence of real numbers converging to 0. Given
n # N, choose m(n) such that

:
�

i=n+m(n)+1

|( f, fi) | 2�
=2

n

B
& f &2, \f # Hn .

Consider Sn+m(n) as an isomorphism from Hn onto Kn :=Sn+m(n)Hn and let
Qn denote the orthogonal projection of H onto Kn . Then

&S &1f &(Sn+m(n) | Hn
)&1 Qn f &

�
1
A

(&(I&Qn) f&+
=n

A&=n
&Qn f &), \f # H.

Proof. By assumption,

&(S&Sn+m(n)) |Hn
&2= sup

f # Hn , & f &=1

&(S&Sn+m(n)) f&2

= sup
f # Hn , & f &=1 " :

�

i=n+m(n)+1

( f, fi) fi"
2

� sup
f # Hn , & f &=1

B :
�

i=n+m(n)+1

|( f, fi) |2�=2
n .
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Thus &(S&Sn+m(n)) |Hn
&�=n . It follows that for f # Hn ,

&Sn+m(n) f &=&Sf &(Sf &Sn+m(n) f )&

�&Sf &&&(S&Sn+m(n)) f &�(A&=n) & f &.

Therefore

&(Sn+m(n) | Hn
)&1&�

1
A&=n

.

Now, for f # H we have

&S&1f &(Sn+m(n) | Hn
)&1 Qn f &

�&S&1f &S&1Qn f &+&S &1Qn f &(Sn+m(n) | Hn
)&1 Qn f &

�&S&1(I&Qn) f &+&S&1(I&S(Sn+m(n) | Hn
)&1) Qn f &

�
1
A

(&(I&Qn) f &+&(Sn+m(n)&S)(Sn+m(n) | Hn
)&1 Qn f &)

�
1
A

(&(I&Qn) f &+&(S&Sn+m(n)) |H&

_&(Sn+m(n) | Hn
)&1& }&Qn f &)

�
1
A \&(I&Qn) f &+

=n

A&=n
&Qn f &+ .

Q.E.D

The condition in Theorem 3.5 implies that for all f # Hn we have

:
n+m(n)

i=1

|( f, f i) |2�\A&
=2

n

B+ & f &2.

By comparing this to the condition on m(n) in Theorem 3.3, namely

:
n+m(n)

i=1

|( f, f i) |2�
A
2

& f &2, \f # Hn ,

we see that as soon as =n�- AB�2, the condition in Theorem 3.5 forces us
to choose a larger value for m(n) than in Theorem 3.3. Thus, in the follow-
ing we will specify carefully which condition we refer to. We will use both
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results, partly for the above reason, and partly because the condition in
Theorem 3.5 can not be verified using linear algebra as in the case with the
condition in Theorem 3.3.

A problem of particular interest is that of approximation of the frame
coefficients ( f, S &1f i) , f # H. Theorem 3.3 shows that we can approximate
( f, S&1f i) as close as we want using finite-dimensional methods, since

( f, (PnSn+m(n))
&1 Pn fi) � ( f, S&1f i) for n � �, \f # H.

Actually, much more is true: the sequence of coefficients
[( f, (Pn Sn+m(n))

&1 Pn fi)]n+m(n)
i=1 converges to [( f, S &1f i)]�

i=1 in l2-sense
as n � �; i.e.,

:
n+m(n)

i=1

|( f, (PnSn+m(n))
&1 Pn fi)&( f, S &1f i) |2

+ :
�

i=n+m(n)+1

|( f, S&1fi) |2 � 0 for n � �.

This is the content of the following theorem. Observe that the second term
above trivially converges to 0 as n � �, so we can concentrate on the first
term.

Theorem 3.6. For n # N, choose m(n) as in Lemma 3.1. Then

:
n+m(n)

i=1

|( f, (PnSn+m(n))
&1 Pn f i) &( f, S&1f i) |2 � 0

for n � �, \f # H.

Proof.

:
n+m(n)

i=1

|( f, (Pn Sn+m(n))
&1 Pn fi) &( f, S&1f i) |2

= :
n+m(n)

i=1

|( (PnSn+m(n))
&1 Pn f &S&1f, fi) | 2

�B &S &1f &(PnSn+m(n))
&1 Pn f &2 � 0 for n � �.

Q.E.D
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A similar proof shows that under the assumption in Theorem 3.5, also

:
n+m(n)

i=1

|( f, (Sn+m(n) | Hn
)&1 Qn f i)&( f, S &1f i) |2 � 0

for n � �, \f # H.

The fact that the inverse frame operator and the frame coefficients can be
approximated arbitrarily closely does not make it a trivial matter to use the
results in concrete applications. For large values of n, the dimension of Hn

is correspondingly large, making it computationally expensive to compute
(PnSn+m(n))

&1. Application of our result is simplified drastically in cases
where Sn has a special structure that makes the inversion easy. Recently it
has been discovered [14] that the frame operator S for a finite discrete
Gabor expansion (i.e., Gabor analysis on a finite subset of l2(Z)) has rich
mathematical structure which reduces the computational cost in inverting
S. In [14] Theorem 8.4.3 Strohmer estimates the number of operations
needed. Thus our result has a great potential for application in that case.
For a different approach to this special case we refer to [15].

It is not known whether the frame operator for a finite Gabor system in
L2(R) also has a structure that makes inversion easier. This is an interest-
ing open question for future work.

4. APPROXIMATION OF THE SOLUTION TO
A MOMENT PROBLEM

The principle of approximation using finite subsets of the frame can be
used in many other contexts, of which we present one here. Let again
[ fi]�

i=1 be a frame for H and let [a i]�
i=1 # l2(N). We ask whether there

exists f # H such that

( f, fi) =ai , \i # N.

A problem of this type is called a moment problem. For the general theory
we refer to [16]. It is easy to find example where there is no solution (this
is for instance the case if there is a linear dependence between some
elements in [ fi]�

i=1 that is not reflected in [ai]�
i=1) but as shown in [5]

there always exists a unique element in H minimizing ��
i=1 |a i&( f, f i) | 2;

this element is f =��
i=1 a iS &1fi . We call f =��

i=1 aiS &1fi the best
approximation solution to the moment problem.

In light of Theorem 3.3, a natural question is whether

:
n+m(n)

i=1

ai (PnSn+m(n))
&1 Pn f i � :

�

i=1

aiS &1fi , \[a j]�
i=1 # l2(N).
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The next theorem shows that the answer is yes. Again, this means that the
best approximation solution to the moment problem can be approximated
as close as we want using finite-dimensional methods.

Theorem 4.1. For n # N, choose m(n) as in Lemma 3.1. Then

:
n+m(n)

i=1

ai (PnSn+m(n))
&1 Pn fi � :

�

i=1

aiS &1fi

for n � �, \[ai]�
i=1 # l2(N).

Proof. Let [ai]�
i=1 # l2(N). By Theorem 3.3 applied to ��

i=1 a i f i ,

(PnSn+m(n))
&1 Pn :

�

i=1

ai fi � S&1 :
�

i=1

a i f i

= :
�

i=1

aiS &1fi for n � �.

Since

(PnSn+m(n))
&1 Pn :

�

i=1

ai fi = :
n+m(n)

i=1

ai (Pn Sn+m(n))
&1 Pn fi

+ :
�

i=n+m(n)+1

ai (PnSn+m(n))
&1 Pn fi ,

it is enough to show that

:
�

i=n+m(n)+1

ai (Pn Sn+m(n))
&1 Pn fi � 0 for n � �.

But this can be showed using the following sequence of estimates:

" :
�

i=n+m(n)+1

ai (PnSn+m(n))
&1 Pn fi"

2

= sup
& f &=1 }� :

�

i=n+m(n)+1

ai (PnSn+m(n))
&1 Pn fi , f�}

2

= sup
& f &=1 } :

�

i=n+m(n)+1

ai( (PnSn+m(n))
&1 Pn f i , f ) }

2
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� :
�

i=n+m(n)+1

|ai |
2 } sup

& f &=1

:
�

i=n+m(n)+1

|( (PnSn+m(n))
&1 Pn fi , f ) |2

� :
�

i=n+m(n)+1

|ai |
2 } sup

& f &=1

:
�

i=1

|( fi , (PnSn+m(n))
&1 Pn f ) |2

�B :
�

i=n+m(n)+1

|ai |
2 } sup

& f &=1

&(PnSn+m(n))
&1 Pn f &2

�
4B
A2 } :

�

i=n+m(n)+1

|a i |
2 � 0 for n � �;

here the last estimate is a consequence of &(Pn Sn+m(n))
&1&�2�A. Q.E.D

We have the following estimate for the speed of convergence:

" :
�

i=1

ai S&1f i& :
n+m(n)

i=1

ai (PnSn+m(n))
&1 Pn f i"

�" :
�

i=1

ai S&1f i& :
�

i=1

ai (PnSn+m(n))
&1 Pn f i"

+" :
�

i=n+m(n)+1

ai (PnSn+m(n))
&1 Pn fi"

�"(S &1&(PnSn+m(n))
&1 Pn) :

�

i=1

ai f i"
+

2
A

- B } :
�

i=n+m(n)+1

|a i |
2.

Using the condition from Theorem 3.5 we obtain a result similar to
Theorem 4.1 and a corresponding estimate of the speed of convergence. We
state the result without proof.

Theorem 4.2. Let =n , m(n) and Qn be as in Theorem 3.5. Then for all
sequences [ai]�

i=1 # l2(N) we have that

" :
�

i=1

aiS&1f i& :
n+m(n)

i=1

ai (Sn+m(n) | Hi
)&1 Qn f i"

�
1
A \&(I&Qn) f &+

=n

A&=n
&Qn f &++

1
A&=n

- B :
�

i=n+m(n)+1

|ai |
2.
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5. EXAMPLES

For notational convenience we indexed the frames by the natural
numbers in the previous sections. It is clear that the same results can be
formulated for any countable index set I. When [ fi]i # I is a frame and J�I
is finite, denote the frame operator for [ fi] i # J by SJ . Let Hj :=span[ fi] i # J

and let PJ be the orthogonal projection onto HJ .
Let [In]�

n=1 be a collection of finite subsets of I such that

I1 �I2 � } } } �In } } } ZI.

With this notation Theorem 3.5 can be formulated in the following way:
Given n # N, choose a finite set Jn containing In such that

:
i � Jn

|( f, fi) |2�
=2

n

B
& f &2, \f # Hn . (2)

Let QIn
denote the orthogonal projection of L2(R) onto KIn

:=SJn
HIn

.
Then

&S&1f &(SJn | HIn
)&1 QIn

f &

�
1
A \&(I&QIn

) f &+
=n

A&=n
&QIn

f &+ , \f # H.

In the present section we are mainly interested in how to find Jn in concrete
situations. The example we present here involve two types of operators on
L2(R), namely

translation Ta with a # R : (Ta f )(x)= f (x&a), f # L2(R), x # R

and

modulation Eb , b # R : (Eb f )(x)=eibxf (x), f # L2(R), x # R.

Theorem 5.1. Let f # L2(R) have compact support and let [ai]�
i=&� be

an increasing sequence of real numbers. Suppose that [ fi]�
i=&� :=[Tai

f ]�
i=&�

is a frame for H :=span[ fi]�
i=&� . Define In :=[&n, &n+1, ..., 0, 1, ..., n].

Then there exists a nonnegative integer m independent of n such that

&S&1f &(SIn+m | Hn
)&1 QIn

f &�
1
A

& f&QIn
f &, \f # H.
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Proof. By [8], the assumption that [ fi]�
i=&� is a frame for H implies

that [ai]�
i=&� is uniformly relatively separated. That is, there exists a finite

collection of disjoint index sets Jk , k=1, ..., l, such that Z=� l
k=1 Jk and

each set [ai] i # Jk
is $k -separated, meaning that

$k := min
i, j # Jk , i{ j

|ai&aj |>0.

Now, chose $ # ] 0, min $j[. Observe that any interval of length $ contains
at most l points ai , i # Z.

By assumption, f has compact support, say, supp( f )�[c, d]. So for
a # R, supp(Ta f )�[a+c, a+d]. Consequently, if g # HIn

, then supp(g)�
[a&n+c, an+d]. It follows that (g, Ta f ) =0 for all g # HIn

if

a+c�an+d or a+d�a&n+c,

i.e., if

a&an�d&c or a&n&a�d&c.

Let [a] denote the integer part of the number a # R. An interval of length
d&c contains at most [(d&c)�$]+1 points from each separated sequences
[ai]i # Jk

, and thus at most m :=l([(d&c)�$]+1) points from [ai]�
i=&� .

Thus

:
i � In+m

|(g, f i) |2=0 \g # HIn
,

and now the result follows from the version of Theorem 3.5 that we stated
at the beginning of the section. Q.E.D

Note that, according to [8], a collection of translates of a single function
can not form a frame for L2(R), so in the theorem above H is a proper
subspace of L2(R).

Define the Fourier transformation of f # L1(R) by

f� ( y)=
1

2? | f (x) e ixy dx.

Note, that i denotes the complex unit number here! As usual we extend the
Fourier transformation to an isometry from L2(R) onto L2(R).

Our next application of the theorems in Section 3 concerns Gabor
frames [ fk, l (x)]k, l # Z , as defined in Section 2. Observe that in terms of the
translation and modulation operators we have fk, l (x)=(EkbTla f )(x).
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Our approach is strongly motivated by Daubechies' celebrated paper
[10]. For M # N, define two operators QM , RM on L2(R) by

(QM g)(x)=1[&M; M](x) g(x) and (RM g)7 (x)=1[&M; M](x) ĝ(x).

On p. 1001 in [10] Daubechies shows that under certain regularity condi-
tions of f # L2(R) (see the exact requirements in Theorem 5.2 below), there
exists a constant k(a, b) (as the notation indicates, depending only on the
values of a, b, which are fixed here) such that for all M, m # N,

:
|kb|�M+m, l # Z

|(QM g, fk, l) |2�k(a, b)(1+m2)&2:+1 &g&2, \g # L2(R).

The constant k(a, b) is estimated explicitly in [10]. Furthermore, a similar
estimate holds with QM replaced by RM and the roles of k, l switched:

:
|la|�M+m, k # Z

|(RM g, fk, l) |2�k(b, a)(1+m2)&2:+1 &g&2, \g # L2(R).

For n # N, we define the finite index set In by

In=[(k, l ) # Z_Z | |kb|�n, |la|�n].

Theorem 5.2. Let f # L2(R) and assume that for constants C>0,
:>1�2 we have

| f (x)|�C(1+x2)&:, \x # R and | f� ( y)|�C(1+ y2)&:, \y # R.

Furthermore, assume that [ fk, l (x)]k, l # Z is a frame for L2(R) with bounds
A, B and let [=n]�

n=1 be a decreasing sequence of real numbers converging
to 0. Given n # N, choose M>n such that

&(I&QM) g&�=n(B(4B+1))&1�2 &g&, \g # HIn

and

&(I&RM) g&�=n(B(4B+1))&1�2, &g&, \g # HI&n .

Then, choose m such that

m>- (=2
n �B(4B+1)(k(a, b)+k(b, a)))1�(&2:+1)&1.

Then we have:

(i) :
(k, l ) � IM+m

|(g, fk, l) |2�
=2

n

B
&g&2, \g # HIn
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and for all f # L2(R),

(ii) &S&1f &(SIM+m | HIn
)&1QIn

f &�
1
A \&(I&QIn

) f &+
=n

A&=n
&QIn

f &+ .

Proof. Note again that Lemma 3.4 guarantees that the choice of M is
possible. Now, for g # L2(R) and natural numbers M, m, we have

:
(k, l ) � IM+m

|(g, fk, l) |2

� :
|kb|�M+m, l # Z

|(g, fk, l) | 2+ :
|la|�M+m, k # Z

|(g, fk, l) | 2=(V).

In order to estimate the first term in (V), write

(g, fk, l)=( (I&QM) g, fk, l)+(QM g, fk, l) .

Then

|(g, fk, l) |2�2 } |( (I&QM) g, fk, l) |2+2 } |(QM g, fk, l) |2.

By a similar estimate for the second term in (V), we get

(V)�2 :
|kb|�M+m, l # Z

|( (I&QM) g, fk, l) |2

+2 :
|kb|�M+m, l # Z

|(QM g, fk, l) |2

+2 :
|la|�M+m, k # Z

|( (I&RM) g, fk, l) |2

+2 :
|la|�M+m, k # Z

|(RM g, fk, l) |2

�2B(&(I&QM) g&2+&(I&RM) g&2)

+2 :
|kb|�M+m, l # Z

|(QM g, fk, l) |2

+2 :
|la|�M+m, k # Z

|(RM g, fk, l) |2

�2B(&(I&QM) g&2+&(I&RM) g&2)

+(k(a, b)+k(b, a))(1+m2)&2:+1 &g&2.
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The choice of M, m in the assumption now implies that

:
(k, l ) � IM+m

|(g, fk, l) |2�
=2

n

B
&g&2, \g # HIn

.

This proves (i). (ii) is now a consequence of the version of Theorem 3.5
that we stated at the beginning of the section. Q.E.D

A similar result for wavelets can be proved using the proof of [10,
Theorem 3.2]. However, we will not encourage readers interesting in
applications to do so! Instead we refer to the paper [7], where a different
method to obtain the estimate (2) is used. In [7] it is proved that (2) is
satisfied for a wavelet frame [Da k Tlb,] if Jn is chosen such that a finite
number of conditions of the form ``�(k, l ) � Jn

|(Da k Tlb ,, ,) | 2 small'' is
satisfied. This kind of condition is easy to satisfy because it only refer to the
mother wavelet ,.
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